
CSCB20 Week 12 Notes
1

Redirect:
- The Flask class has a redirect() function. When called, it returns a response object and

redirects the user to another target location with specified status code.
- General syntax: redirect(location, statuscode, response)

The location parameter is the URL where response should be redirected.
The statuscode parameter is sent to the browser’s header. The default value is 302.
The response parameter is used to instantiate response.
Note: Of the 3 parameters above, only the location parameter is required.

- As shown below, the redirect function is very useful when combined with the url_for
function.

URL_FOR:
- The url_for() function is very useful for dynamically building a URL for a specific

function. The function accepts the name of a function as first argument, and one or more
keyword arguments, each corresponding to the variable part of URL.

- General syntax: url_for(function_name)
- Note: url_for() can be used with redirect() to redirect the user to another function and

another webpage.
- Note: We can also use url_for in our HTML code.

Sessions:
- Session is the time interval when a client logs into a server and logs out of it. The data,

which is needed to be held across this session, is stored in the client’s browser.
Note: Suppose the client logs into Gmail using Google Chrome. Because the session
data is stored in the client’s browser (Google Chrome), if the client were to open up
another tab and try to access Gmail again, then they would not need to log in a second
time. However, if the client opens up a new browser, say Internet Explorer, and tries to
access Gmail, then they would need to log in again.

- We cannot have session data used across browsers. This is due to security issues.
- A session with each client is assigned a Session ID. The Session data is stored on top of

cookies and the server signs them cryptographically. For this encryption, a Flask
application needs a defined SECRET_KEY. To create your secret key, you need to set
app.secret_key to some string that you choose to be your secret key.
Here is the general syntax to create this secret key:
app.secret_key = ‘your secret key’
E.g. app.secret_key = ‘Rick’

- The Session object is a dictionary object containing key-value pairs of session variables
and associated values.
General syntax for creating a Session object:
Session[variable name] = value
E.g. Session[‘username’] = ’admin’

- To remove a session variable, use the pop() method on the session object and mention
the variable to be removed.
General syntax: session.pop(variable name, none)
E.g. session.pop('username', None)

- To create a logout feature, do something similar to below:
@app.route('/logout')
def logout():
 session.pop(variable name, None)
 return redirect(url_for(function_name'))

CSCB20 Week 12 Notes
2

-
Flash:

- You can use the flash() function to display a message on the screen.
- General syntax: flash(message, category)

The message parameter is the actual message to be flashed.
The category parameter is optional. It can be either ‘error’, ‘info’ or ‘warning’.

- On the HTML page(s), you can use the get_flashed_messages() function to get the flash
message.

- Typically, the HTML side would look something like this:
{% with messages = get_flashed_messages() %}

{% if messages %}
{% for message in messages %}
 ...
{% endfor %}

 {% endif %}
{% endwith %}

- First, we get the flash message from get_flashed_messages(). Then, if there are any
messages, we loop through all the messages and do something with them.

Building a login page:
- Using the above information, we can create a login page. Consider the code snippets

below:

CSCB20 Week 12 Notes
3

CSCB20 Week 12 Notes
4

This is what the HTML page looks like:
This is the login screen.

If a user tries to enter an invalid username password combination, then the flash() error
message will appear:

If the user does enter in a valid username password combination, then they will be
redirected to the home page:

If the user clicks on the Logout link, they will be logged out and will return to the login

CSCB20 Week 12 Notes
5

page.

SQLite:

- Setting up the database:
import sqlite3
from flask import Flask, render_template, request, g

the database file we are going to communicate with
DATABASE = '/path/to/database.db'

connects to the database
def get_db():
 # if there is a database, use it
 db = getattr(g, '_database', None)
 if db is None:
 # otherwise, create a database to use
 db = g._database = sqlite3.connect(DATABASE)
 return db

converts the tuples from get_db() into dictionaries
def make_dicts(cursor, row):
 return dict((cursor.description[idx][0], value)
 for idx, value in enumerate(row))

given a query, executes and returns the result
def query_db(query, args=(), one=False):

 # create a cursor called "cur" and execute the query "query" with arguments
"args"
 cur = get_db().execute(query, args)

 # get all the results (this function only works for SELECT statements)
 rv = cur.fetchall()

 # close the connection (do not leave an open connection)
 cur.close()

CSCB20 Week 12 Notes
6

 # return the results depending on if there are many or just one
 return (rv[0] if rv else None) if one else rv

- Whenever we want to query information from the database, we need to set up a
connection with the database which is done using the function get_db(). This function
returns a database object of which we can apply queries to.

- The function of make_dicts() is to turn the data returned as tuples to dictionaries. By
default, Flask returns database data as tuples which are an inconvenient data structure
to use. This function utilizes the Factory design pattern to generate dictionaries for all the
tuples normally returned by Flask. This function is technically not necessary but will
make your life infinitely easier in the long run.
E.g. I have the database called test.db and it contains this information:

Now, consider these 2 functions:

This is what you see in the terminal:

CSCB20 Week 12 Notes
7

Notice that the line after “I am not using make_dicts here” in the terminal contains the
data in a tuple while the line after “I am using make_dicts here” contains the data in a
dictionary with the name of the column being the key.
Note: The part of “one=True” means that you are only getting the first row that satisfies
the query. In my database above, there are 2 rows, but only the first got printed. If you
do not put the “one=True” part, then you will get all the row(s) that satisfies the query.
Furthermore, the data will be returned in either an array of tuples, if you do not use
make_dicts, or an array of dictionaries, if you do use make_dicts. Lastly, it doesn’t matter
how many rows are getting returned, the data will always be inside an array.
If I refresh my two web pages and remove the “one=True” parts, as shown below,

 I get the following output in the terminal:

Notice that now, all the returned data is in an array.

CSCB20 Week 12 Notes
8

Now, if I change the query such that none of the rows will satisfy it, like such,

then the output changes to

Notice how that even though none of the rows matched, I still got back an array.

- The function of query_db() is to query the database based on a given query. Given a
query in the form of a string, it executes and returns the result of the query. In
conjunction with make_dicts(), this return will be in the form of a dictionary. query_db()
uses a database construct called a cursor to select the data based upon the query and
then packages the result to finally return. query_db() is a simplification of something
called a cursor action in the database. A cursor in a database is sort of like a cursor on
a computer (i.e. the mouse pointer). It sort of “hovers” over the database and performs
the queries in the database. When you run queries in SQLite browser or on the
command-line, these programs create a cursor for you that you don’t see and perform
what is happening in this function.

- Database teardown:
- Whenever you close the Flask application, you need to close any open connections you

have to the database. Otherwise, the next time you access the database, you may be
blocked by a connection that was still left open. To do this, we create a function that will
be called on application teardown that will destroy any currently open connections.

- You can use the function below to close the database.
this function must come after the instantiation of the variable app
(i.e. this comes after the line app = Flask(__name__))
@app.teardown_appcontext
def close_connection(exception):
 db = getattr(g, '_database', None)
 if db is not None:
 # close the database if we are connected to it
 db.close()

- Querying Data:
- Here are the generic steps you can use to query data:

1. Create a database instance using get_db().
2. Apply make_dicts to convert the tuples to dictionaries.

CSCB20 Week 12 Notes
9

3. Get any request parameters (if there are any).
4. Call and execute the database query while storing it somewhere.
5. Close the database.
6. Return the results.

CSCB20 Week 12 Notes
10

- Querying without request parameters:
Consider the code snippets and database below:

CSCB20 Week 12 Notes
11

The HTML output looks like this:

- Querying with request parameters:

Consider the code snippers and database below:

CSCB20 Week 12 Notes
12

This is what the HTML output looks like:

Note: After every query, when we are completely done with the connection, you must
close the connection. If you do not close the connection, the next time you access the
database, you may get locked out.
Note: We replace the request parameter using a ? instead of something like
query_db('select * from items where name = {name}'.format(name=name)). This is
because using the .format() method to replace parameters leaves the code vulnerable to
SQL injection. An SQL injection is when a malicious user writes SQL code in the text
box which could cause very bad things to happen. Using the ? sanitizes the input and
makes it safe to execute.

- The general process of executing any sort of SQL query is a 3-step process:
1. Create a cursor.
2. Run the query using .execute(). Also commit the changes if you modified data.
3. Close the cursor.

Note: The reason why you didn’t have to create a cursor or use .execute() when you
were querying is because the query_db() function did it for you. You just had to call it.
Note: For a SELECT query, the cursor does not modify any data in the database so you
will immediately get back the result of the query. For a query that modifies data in the
database (such as an INSERT or an UPDATE), the database does not automatically
apply the query when it is executed. Instead, it “stages” the query and waits until you
“commit” it to apply the changes to the database.

CSCB20 Week 12 Notes
13

- Inserting into the database:
Consider the code snippets and database below:

Here is what the HTML page looks like:

CSCB20 Week 12 Notes
14

If I enter ABC for first name and DEF as last name and click submit:

We see the changes in the database:

- Updating information in the database:

Consider the code snippets and database below:

CSCB20 Week 12 Notes
15

This is what the HTML page looks like:

If I type ABC for first name and DEF for last name and click submit, the database
changes to:

CSCB20 Week 12 Notes
16

- Doing a natural join:
Consider the code snippets and database below:

CSCB20 Week 12 Notes
17

If I run the command “select * from Student natural join Marks;” in the database, I get
this:

When I run app.py, this is what the HTML page looks like:

CSCB20 Week 12 Notes
18

- Some common errors:
- When you manually update the database, please make sure that you click on the

“Write Changes” button. If you do not and your Flask code tries to access the
database, you may get errors. When the “Write Changes” button is clicked, it will
grey out, as shown here

This is what the “Write Changes” button looks like when you make change(s) to
the database but don’t click it.

The error looks like this:

- Do not have spaces in the names of your tables or your columns. When you try

to access tables/columns with names that have spaces, it might get mistaken as
2 names rather than 1.

HTTP Requests:
- Whenever we transfer data between the frontend (i.e. the HTML) and the backend (i.e.

Flask), we do so using something called an HTTP request. There are four main HTTP
request methods, shown below:
Method name Description

GET Used to retrieve data from the server

POST Used to send data to the server

CSCB20 Week 12 Notes
19

PUT Used to update pre-existing data on the server

DELETE Used to delete pre-existing data on the server
- Each of the HTTP request methods is denoted by the method= attribute in the <form>

tag in your HTML. If you do not denote a method, it defaults to a GET request. To get the
data, passed through the GET request, in Flask, you would need to use
request.args.get(). Note that by standard, we are not allowed to pass data alongside a
GET request; we can only add “data” that can be read by the server through the URL
itself.

- If we want to send data to the server, we want to do so using a POST request instead of
a GET request. To do this, we slightly modify our <form> in the HTML code by adding
the attribute method="POST" to account for this. This attribute will tell Flask that we are
intending to send it a POST request to the route denoted at action=. In order to catch the
data, we also need to modify our Flask route by doing the following:
@app.route(‘/’, methods=[“GET”, “POST”])
def home():

if (request.method == “POST”):
...

Inside the app.route(), we need to specify to Flask that we intend to catch a request of
type POST (not putting anything defaults to GET) and inside the function, you need to
specify that the method you want is POST by doing if(request.method == “POST”).
Note: You must put both GET and POST in app.route. If you don’t, you may get some
error message saying that “Method not allowed.”

Unlike the GET request, the POST request does not send the data from the form in the
URL but instead puts it in something called the POST body which is a section of the
request meant to hold data. There are two main reasons why POST requests don’t put
data in the URL:

1. Adding a large amount of data will clutter the URL. URLs actually have a limit of
around 2000 characters.

2. GET requests are not allowed to carry data whereas POST requests are. They
do not have the same limitations as GET requests

In order to access the data, we access it through a variable called request.form which
represents the POST body. This variable is in a form called JavaScript Object Notation
or JSON for short. Flask sees this data type as a regular Python dictionary where the
keys are equal to the name attribute in your HTML form and the values are whatever
were entered into them upon submission.

- Recall that the GET request will show the query in the URL while the POST request
hides it. Furthermore, the GET request will cache its data while the POST request won’t.
For these reasons, and some more, it’s best to use the POST request when dealing with
sensitive information, such as usernames, passwords, etc.

- Note: Do NOT mix the GET request with the POST request. If you do
<form action=’/’ method=“POST”>
…
</form>
in HTML, you must use request.form in Flask. Using request.get.args will cause an error.

CSCB20 Week 12 Notes
20

- Note: You must include the name attribute in all the places where you want the user to
enter information. If you leave out the name attribute, then the data will not be submitted
to the backend (Flask).

- Note: Say that in your HTML file, you have a <form> element and inside that <form>
element, you have an <input> element with the name FirstName. Then, in Flask, you can
do request.form[‘FirstName’] to get the value associated with FirstName. If you just do
request.form, it will show you all the values submitted. This is because request.form
returns a dictionary with the key being the value of the name attribute. Recall that in
Python, to get the value associated with a specific key in a dictionary, you do
Dict[‘key_name’].

- Note: If you want to get a specific input from a GET request, use request.args.get(), but
if you want to get all the data from a GET request, use request.args.

- Note: The action=“...” specifies the endpoint of where this data should go to. When using
Flask, it should match the endpoint in app.route(). For example, if you have
app.route(‘/’), then you need to have <form action=‘/’ ...)>.

- Here are some examples of HTTP GET and REQUEST methods:
E.g. 1. HTTP POST Method
Consider the pieces of code below:

CSCB20 Week 12 Notes
21

If the user goes to http://127.0.0.1:5000/, they will see the below picture.

If I enter Rick for First Name and Lan for Last Name and click on the submit button, you
will see

In the terminal. Furthermore, you will not see the query in the URL.

E.g. 2. HTTP POST Method but with no name attribute.

CSCB20 Week 12 Notes
22

If I remove the name attribute from First Name, as shown below,

and I enter Rick for First Name and Lan for Last Name, this is what you see in the
terminal:

Notice that this time, FirstName isn’t shown in the output. This is because if you don’t put
the name attribute, whatever the user inputs for that textbox/radiobutton/etc will not be
submitted to the backend (Flask).

E.g. 3. HTTP GET Request
Consider the following pieces of code below:

CSCB20 Week 12 Notes
23

The HTML page looks like this:

If I were to type Rick for First Name and Lan for Last Name, I would see this in the URL:

CSCB20 Week 12 Notes
24

Notice that the query is shown in the URL. Furthermore, this is what I see in the terminal:

